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Abstract—The cloud computing paradigm has recently
emerged as a convenient solution for running different workloads
on highly parallel and scalable infrastructures. One major appeal
of cloud computing is its capability of abstracting hardware
resources and making them easy to use. Conversely, one of the
major challenges for cloud providers is the energy efficiency
improvement of their infrastructures. Aimed at overcoming this
challenge, heterogeneous architectures have started to become
part of the standard equipment used in data centers. Despite
this effort, heterogeneous systems remain difficult to program
and manage, while their effectiveness has been proven only in
the HPC domain. Cloud workloads are different in nature and
a way to exploit heterogeneity effectively is still lacking. This
paper takes a first step towards an effective use of heterogeneous
architectures in cloud infrastructures. It presents an in-depth
analysis of cloud workloads, highlighting where energy efficiency
can be obtained. The microservices paradigm is then presented
as a way of intelligently partitioning applications in such a way
that different components can take advantage of the heteroge-
neous hardware, thus providing energy efficiency. Finally, the
integration of microservices and heterogeneous architectures, as
well as the challenge of managing legacy applications, is presented
in the context of the OPERA project.
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agement, microservices, heterogeneous data center.

I. INTRODUCTION

Power consumption in data centers is becoming a prime
concern for cloud operators. Approximately 1.3% of world-
wide electricity goes towards fuelling data centers [1]. While
some of the biggest players such as Google report commend-
able efficiency numbers, the average efficiency of data centers
is only in the range of 10-15%. This means that there is a
huge waste of computing resources, but also that there is a
huge opportunity for savings. If we can reduce the amount
of electricity being wasted, not only will we have “greener”
data centers, but we can also reduce operating expenses that
could save businesses billions of dollars. Where is the waste
coming from? Data centers (DCs) are designed to supply the
computing needs for a body of consumers without knowing
exactly what the demands will be. Consumer demand can
change over time, thus the DC must be able to react to these
changes, otherwise prolonged delays may break service level
agreements (SLAs) that are in place with the customers. With
that in mind, the DC infrastructure is designed to handle the
predicted peak demand, with little regard for the times at
which the demand is not at its peak. This causes a vast over-
provisioning of resources, which is not only wasteful in terms
of computing power, but also increases the physical footprint of
the data center, and increases cooling and maintenance costs.

Various physical techniques have been employed to in-
crease energy efficiency at several levels: inside the servers,
at the rack level, and at the DC infrastructure level [2].
Even though energy-aware scheduling algorithms have been
proposed to further improve energy efficiency [3], reported
average efficiency numbers remain low [4]. Heterogeneity
has been recognized as a way to increase performance and
reduce power consumption at the same time. It is based on
the adoption of hardware which is specialized for a specific
task. A heterogeneous system can be composed of hardware
with the same instruction set architecture (ISA) but a different
micro-architecture (e.g., ARM big-LITTLE and Intel Xeon
PHI architectures), or completely different instruction sets.
However, such a difference creates difficulties for programmers
that are forced to integrate different programming models
within a single application. In the HPC domain this problem
was somewhat mitigated where applications are monolithic and
could be optimized for the different hardware components.
However, this is very costly in terms of programming time
and programming expertise, since very few domain experts
are able to take full advantage of their computing hardware.
Conversely, in the cloud computing domain it remains an open
challenge.

In this paper, we look at current trends of cloud applica-
tions, and consider how to guide development of energy-aware
applications. If it is desired to run them on heterogeneous
hardware, the correct development tools must be in place
so that the responsibility of efficient execution does not fall
primarily on the application developer. One of the necessary
components of a power-aware DC infrastructure is a real-
time workload management tool that continuously monitors
server performance, and can take corrective action to ensure
minimal energy consumption. The first step in designing such
a tool is to understand the nature of the workloads that run
on the system, and to be able to classify them in a format
that an automated tool can use. We believe that partitioning
the workload into independent blocks (possibly optimized for
a specific hardware component), and giving the workload
manager the capability of deploying them on the most well
suited hardware component allows to improve DC efficiency.
In order to analyze the nature of the workloads in the cloud
computing domain, we investigate the differences in managing
workloads in the three predominant cloud models in use
today, namely Infrastructure-as-a-Service (IaaS), Platform-as-
a-Service (PaaS), and Software-as-a-Service (SaaS). From the
results of our analysis, we can advocate that the SaaS model
affords the most opportunity for power savings.



The rest of the paper is organized as follows. Sec-
tion II summarizes research works that aim at improving
power/energy efficiency of data centers by acting at different
levels of the system (i.e., exploiting hardware features, het-
erogeneity, etc.). Section III provides an in-depth analysis of
the workloads belonging to the cloud computing domain. The
analysis takes into consideration the different cloud models
we encounter today (i.e., [aaS, PaaS, and SaaS), and for each
of them it provides an evaluation of the potential energy
savings achievable. Section IV introduces the microservice
architecture paradigm, that will be exploited in the OPERA
project (section V). The project is described in terms of
adopted hardware architecture and its integration with the
microservice architectural pattern. The challenge of integrating
legacy applications is described as well. Finally, section VI
summarizes the contribution of the work.

II. DATA CENTER POWER EFFICIENCY

The electricity delivered to a DC infrastructure is dis-
tributed among the IT equipment, cooling system, and other
non-IT facilities required to maintain the DC operations, and
some waste is inherent due to inefficiencies in the power
distribution network. Green Grid created the power utilization
effectiveness (PUE) metric [5] as a basis for comparing the
energy efficiency of such infrastructures. PUE is determined
by dividing the amount of power entering the infrastructure
by the power used by the IT equipment within it. PUE opti-
mization may provide substantial power savings [6], however
optimizing PUE is not enough because energy delivered to
the IT equipment is not completely utilized. A fraction is
wasted by the IT equipment power supplies, voltage regulator
modules, and cooling fans inside servers and switches. The
largest component of DC power inefficiency is server under-
utilization. According to Google [6], in a hyper-scale cloud
infrastructure the percentage of server utilization can vary from
10% to 50%. Among the factors that contribute to low server
utilization there is vast over-provisioning of IT resources along
with a large deployment of often unused virtual machines.
There are a lot of works that address the problem of increasing
power efficiency of the servers, taking into consideration
different usage scenarios. The research covers different areas,
ranging from high-level approaches for workload scheduling
to CPU power management techniques.

A. Improving efficiency through heterogeneity

Heterogeneity has been recognized as a viable solution to
improve performance and reduce power consumption at the
same time [7]. At its basis there are hardware accelerators, such
as GPGPUs and FPGAs, with their own specific programming
models. Although from an architectural standpoint accelerators
are able to process more instructions and data compared to gen-
eral purpose CPUs, from a technology viewpoint they still need
the use of power reduction techniques such as dynamic voltage
and frequency scaling (DVFES), adaptive voltage and frequency
scaling (AVFS), and partial reconfiguration for FPGAs [8] to
keep power consumption under control. The full exploitation of
such hardware accelerators in cloud computing environments
is still not possible, given the difficulties in programming such
systems and making them easily accessible in a virtualized en-
vironment. Several research works propose (semi-)automated

approaches to offload computations on heterogeneous hard-
ware components. Durelli et al. present the SAVE project [9],
that aims at providing a solution for the efficient exploitation
of specialized computing resources of a heterogeneous system.
By leveraging virtualization of underlying hardware, making
the operating system aware of the available resources, and
integrating an adaptive resource manager, applications can be
run efficiently on the heterogeneous system. Although these
concepts are general and may be applicable in the cloud
computing domain, the project only demonstrated feasibility
for the HPC domain.

Delimitrou and Kozyrakis [10] address heterogeneity in
modern DC infrastructures and present Paragon, an interfer-
ence and heterogeneity aware workload scheduler. The central
feature of the Paragon is its classification engine that allows
fast and accurate classification of an application, based on two
parameters: heterogeneity and interference. This classification
allows selecting best server configuration for the incoming
workload as well as co-locating of newly arrived workloads
with ones that will cause the least interference with each
other. Andersen [11] introduced the concept of *wimpy’ nodes
for implementation of data-intensive distributed storage. The
wimpy server node is based on a low-power embedded proces-
sor which is more power efficient that high-end server CPUs.
In embarassingly parallel applications, the ability to highly
distribute the workload among several wimpy nodes allows
the system to achieve high throughput with low power con-
sumption. Other works, such as [12], propose heterogeneous
architectures that combine high-performance and low-power
servers in order to achieve better overall energy proportionality
and energy efficiency.

B. Improving efficiency at the infrastructure level

DC infrastructures can be made energy/power aware by ex-
ploiting the interaction of various components of the software
stack (i.e., operating system, middleware, virtual machines,
etc.) with the underlying hardware. The Muse system [13] pro-
poses consolidation of workloads running inside FreeBSD re-
source containers allowing full servers to be powered up/down
as needed. The work addresses the management of homoge-
neous resources by using ’bids’ and ’penalties’ that represent
costs associated with the resource usage, SLA violation, and
QoS degradation. The Muse system maintains a set of active
servers and adjusts the server pool size to optimize for best
energy utilization. When a server no longer has any active
workloads, it is put into a low power state (hibernated) and
eventually shut down. The system only attempts to optimize
according to the CPU load and does not take into account
DRAM, disks and network cards. In addition, the authors
note that their algorithm becomes expensive with changing
workloads. Nathuji et al. [14] present power management
techniques in a virtualized environment. In addition to virtual
machine (VM) consolidation and use of hardware active low
power states, they proposed a new concept of soft resource
scaling. When a VM decides to transition into a low power
state, the underlying virtual machine monitor (VMM) allocates
fewer hardware resources to that VM. The approach relies
on the guest’s ability to effectively manage its power states
and therefore if a guest operating system has no advanced
power management policies very few savings are available.
Both of these approaches are limited in reducing the power



consumption of the system, by acting only on the processor
states. In fact, although processor DVFS significantly improves
energy proportionality of the CPU, the other components of
the system (i.e., DRAM, disks, network cards, fans) remain
active and their power consumption may reach as much as
75%. PowerNap [15] addresses the lack of energy propor-
tionality in commodity servers and waste of idle-energy. In
the PowerNap approach, the entire system transitions rapidly
between high-performance active state and a minimal-power
nap state, depending on presence or absence of load (also
known as race to idle [16], [17]). However, this technique
is appropriate for services that can tolerate relatively large
variations in response latency. Beloglazov’s work [18] presents
an architectural framework for managing power efficiency in
IaaS cloud platforms. The framework is mainly based on
algorithms for energy efficient VM placement, as well as on the
consolidation of the servers using dynamic migration of VMs
to achieve the most power-efficient operation of the data center
without significant violation of any SLA. Conversely, a SLA
violation is treated like a penalty and as such it is integrated
into the placement and migration algorithms. Although this
approach is suitable for the general case of laaS clouds, it
relies only on CPU and memory utilization metrics. Moreover,
it does not target the other cloud service models, such as PaaS
or SaaS, where the cloud management system has a better
estimation of the QoS and thus may have more chances to
better use resources from an energy viewpoint.

C. Improving efficiency at the application level

As Meisner et al. claim in [19], the online data-intensive
(OLDI) services are very sensitive to request-response la-
tencies and hence only low-power active states should be
utilized to achieve power savings without violating service
level objectives (SLO). The PEGASUS system [20] goes in
this direction, and aims to improve power efficiency of latency-
sensitive, data-intensive services. The idea is to adjust server
performance so that the OLDI workload ’barely meets’ its
SLO goal. The PEGASUS uses request latency monitoring
and SLO targets as inputs of a feedback-based controller that
orchestrates server power management systems. Bubble-Up
[21] and its successor Bubble-Flux [22] attack low server uti-
lization in warehouse-scale computers. The Bubble-Up system
presents a method for improving application co-location for
latency-sensitive and batch workloads. The latency-sensitive
applications are profiled to obtain estimate on the impact of
their co-location with a batch application. This data is then
used for the application placement in order to improve server
utilization, and without sacrificing the QoS of latency-sensitive
workload. The Bubble-Flux advances the concept introduced
by Bubble-Up by allowing dynamic selection of co-located
workloads and thus eliminating the need for a preprocessing
phase.

III. WORKLOAD ANALYSIS

Workload classification is not a trivial problem, and is
not always successful [23]. Workloads that run in cloud DCs
are similar to those for grid computing and high-performance
computing (HPC) systems, albeit there are some important
differences. At the highest level, workloads can be divided
into two groups. Interactive jobs (such as OLDI) where a

user is waiting for a response in real-time, and batch jobs
(such as traditional MapReduce) which are generally longer
running, with soft expectations for completion time. From this
viewpoint, job distribution in cloud computing systems shows
a skew towards interactive jobs that is not present in grid or
HPC domains. Online shopping, online banking, and real-time
analytics are a few of the most popular cloud workload types.
That means that cloud workloads are generally sensitive to
completion time. On the other hand, batch workloads, such as
Spark, running on public clouds and that traditionally would
be considered HPC workloads, constitute a small fraction of
cloud workloads.

The sensitivity of cloud jobs to completion time means that
cloud providers need to be able to provide dedicated resources
(CPU, memory, I/O devices, etc.) to their tenants which are
always available to handle the demand on the application.
However, dedicated resources are expensive, and not all tenants
are willing to pay a high price. This is expressed as a trade-
off between resource availability and price, which resulted in
the creation of the ’spot market’ in popular IaaS clouds such
as Amazon AWS. In the spot market, the compute resources
are priced in a free market environment, driven by demand. A
tenant can decide how much a resource is worth, and choose
whether or not to buy a resource. This is a short-term lease,
since the price of the resource may exceed the price the tenant
is willing to pay at any time, and the resource will be freed. The
spot market system gives cloud operators some control over
resource utilization, and by lowering the price during times
of low server utilization, they can entice certain tenants to
purchase more compute resources. While spot markets may
give some control to recover costs of data centers (DCs), it
does not help with power efficiency. Dedicating resources to
a tenant (by either a long-term lease or short-term lease) does
not ensure that the tenant will take advantage of the resource
availability to the fullest extent possible. These dedicated
resources can be under-utilized leading to inefficiencies beyond
the control of the cloud operator.

A. Energy-aware workload consolidation

In general, TaaS clouds are relatively limited in their ability
of optimizing energy efficiency. Monitoring VM efficiency is
limited to what the hypervisor can measure from outside the
VM. The metrics available to estimate server utilization are
CPU load, memory load, and the I/O traffic statistics. To gain
more insight, the hypervisor would require the cooperation of
the guest OS, or to make some assumptions about the operation
of the guest OS. These black-box metrics do not necessarily
correlate with the amount of useful work performed by the
VM, and thus we can only make best-effort estimations about
VM load and efficiency, making it difficult to predict or react
to changes. Additionally, the number of tools available that
can be used to improve efficiency in the context of IaaS cloud
model is quite limited. Practically, the only tool available is
VM migration, which bears its own costs due to memory pre-
copying and cache warm-up [24].

On the other hand, PaaS model has more opportunities for
performing energy-aware workload consolidation. In addition
to the metrics available in the IaaS model, the core services
of PaaS clouds may provide additional information, like, for
instance, the amount of requests per second arriving to a cluster
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Fig. 1. General microservices architecture. A microservice manager runs
on top of the host infrastructure and is responsible for the deployment of
microservices. These are isolated entities with their own local storage that
export a standard HTTP REST API interface.

of web servers. This information may be used by the cloud
orchestration software to make better decisions about workload
placement.

The ability to optimize power efficiency in the case of
SaaS cloud model is even more prominent. The application
running as a service in distributed environment have precise
knowledge of its load and may create very accurate prediction
of future resource requirements. This allows adjustment of the
resources used by the application and either reduce in power
consumption or improve in server utilization. The latter, in
turn, allows avoiding resource over-provisioning and leads to
better power efficiency in a DC.

IV. MICROSERVICES

Microservices is an innovative development style which
allows to build applications composed by several small in-
dependent but interconnected modules [25][26]. Each module
runs using its own processes, and communicate with other
modules by means of a lightweight mechanism that typically
consists of an HTTP-based REST API [27]. The result is an
asynchronous, shared-nothing, highly scalable architecture that
can be distributed over a possibly heterogeneous infrastructure.
The ultimate goal is to avoid monstrous monolithic code that
is poorly scalable and difficult to maintain and update.

Figure 1 depicts the general architecture of a microservice-
based system. A management module runs on the hosting
infrastructure (i.e., the set of hardware resources and the
operating system). It is responsible for performing basic
management operations on the microservices, such as the
allocation and freeing of resources once they complete the
assigned task. Each microservice is an entity isolated from
the others. The communication and the data exchange among
these entities rely on a public API (typically based on a HTTP
REST protocol). This interface is also decoupled from the
service core and its internal storage. Despite their isolation,
microservices can still exploit basic services exposed by the
host infrastructure.

The microservice architectural style is driven by concepts
such as low coupling, that proposes to isolate functionalities in
different modules, and keep it simple, that fosters the creation

of small modules with a single responsibility. The need for a
solution that can follow the technological trends which have
shaken the IT landscape in the recent years led to their creation.
In particular, the transformation of IT infrastructures caused
by the advent of cloud computing gave great opportunities
for developing software (e.g., scientific applications) that was
able to take advantage of the elasticity and scalability of the
underlying infrastructure [28][29]. However, the exploitation
of these benefits requires more flexible software architectures,
that enable applications to take advantage of the virtualized
and distributed nature of the underlying infrastructure. Another
important factor is the popularization of Linux containers,
often referred to as lightweight virtualization. The main feature
of this technology is the ability of multiple processes to
share operating system resources, while still remaining isolated
from each other. This characteristic allows the creation of
virtual instances with less overhead with respect to tradi-
tional hypervisor-based VMs, meaning faster start-up time and
smaller memory footprint. These two trends allow designing
highly scalable applications composed by several redundant
modules which are possibly distributed in a cloud infrastruc-
ture with heterogeneous nodes, thus ensuring performance,
high-availability and scalability.

A. Benefits and drawbacks

One of the main benefit of the microservices-based archi-
tectures is the module independence. Each component repre-
sents a single function of the application and can be indepen-
dently developed and deployed. Each development team works
in autonomy and can choose the preferred or most appropriated
platform and language. This means that microservices can
be spread across heterogeneous infrastructures, composed of
completely different platforms, run-time environments and
hardware architectures. Further, each module is fully replace-
able and upgradable, easing application maintenance.

Managing a large set of distributed components has its
own issues. First of all, service distribution has a negative
impact on the performance that is caused by the time for
transferring data and the time to process requests. This latency
is worsen by the asynchronous communication mechanisms
used to exchange information. Another drawback derives from
the use of distributed databases that should be synchronized
instantaneously at the time changes are made. The result is
the temporary inconsistency of information that must be taken
into account by application developers.

B. Examples

Examples of applications that are organized as intercon-
nected microservices include popular services like Twitter,
eBay, Amazon, Netflix, and SoundCloud.

Amazon is one of the first big industry players to move to
microservices, because it was afflicted by scalability problems
since the e-commerce service was offered. Amazon began serv-
ing its e-commerce platform by using a monolithic application
written in C++, but soon the database, the back-end and the
front-end applications were restricted in their evolution due
to the limitation of the shared architecture. These problems
were addressed by isolating business logic and related data
in independent applications. Over time, Amazon e-commerce
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Fig. 2. The proposed hardware architecture model for OPERA. Racks are
equipped with brawny servers (BS) and boxes of wimpy servers (WSB), while
FPGA boards can be used to offload general purpose CPUs form specific
computations.

platform has evolved in to hundreds of services and systems
written in Java and Scala for aggregating information. The
architecture become a fully-distributed, decentralized, service-
based platform (PaaS) serving many different applications.
Today Amazon web services, as well as sellers and customers
use more than 100 different services to collect data and
construct the final web page [30].

eBay was created in 1995 and in 2006 it managed more
than 200 million users and more than one billion photos [31].
It started as a monolithic Perl application written as a single
DLL, numbering more than 3.4 million lines of code. The
first step towards the transformation into a microservices-based
architecture was the code splitting in to separate functions writ-
ten in Java. Today the Java core is still present in the system,
but it is composed by a set of multi-lingual microservices.

SoundCloud is a popular social platform where users can
create and share sounds [32]. Despite it being younger than
other applications, it evolved over the time to become a
microservices-based platform. The whole service is developed
using 8 different programming languages, and the code man-
agement is centralized on a common GitHub repository. The
service is split into several hundreds microservice instances
(both stateless and stateful), which are managed through the
Bazooka and Chef systems. The former is a deployment system
built for the microservices that expose their interface via a
HTTP REST API, and it is responsible for job scheduling,
process supervision, service discovery setup, request handling
and load balancing, as well as monitoring and logging. The lat-
ter is used to deploy all infrastructure microservices, including
those managed by Bazooka.

V. OPERA ARCHITECTURE

OPERA is a recently started research project, that is funded
by EC under the Horizon 2020 framework. The main goal of
the project is to exploit the potential use of heterogeneous
computing platforms for achieving better power efficiency in
DC infrastructures.

Figure 2 is a diagram showing a possible instance of the
heterogeneous computing platform envisioned by OPERA. The
left side of the figure shows the organization of a DC rack
containing several different nodes. Compute nodes labeled as
brawny servers (BS) represent traditional servers that would

be commonly found in a today data center. They could
be based on an architecture such as Intel’s X86 or IBM’s
POWER. We remain agnostic with respect to the architecture
(ISA) since we are mainly interested in applying general
techniques for managing the software which runs on these
servers. Since GNU Linux and many open source packages
run on all the architectures in question, we consider them
as equivalent, only accounting for their relative processing
capabilities. What unifies BS (regardless of ISA) is a loose
definition of capabilities [33]. These servers typically have
multiple multicore processors, running in the 3-5 GHz clock
range, and equipped with large amounts of DRAM (in the
range of 4 to 16 GiB per core). Furthermore they may contain
high-speed I/0O devices such as SATA or SAS disks, and one
or more 10 GbE network interface cards (NICs). In contrast
to BS, the rack also contains boxes of wimpy servers (WSB).
These servers are considerably less powerful than the brawny
counterpart, and typically run in the 1-3 GHz clock range.
However, they have the advantages of being more densely
populated, drawing less power and creating less heat. There
have been many discussions and studies about the possibility
of replacing BS nodes with WSBs, but it appears that the
drawbacks outweigh the benefits at this time. It is known
that wimpy servers have better power efficiency than brawny
servers (power consumption is relative to the square of the
frequency), but not necessarily better energy proportionality.

A. Hardware heterogeneity

Generally, heterogeneity concerns the adoption of pro-
cessing elements with different characteristics in terms of
architecture, power consumption, and performance. Despite
the use of a mix of brawny and wimpy servers (each with
its own set of architectural features intended to maximize
the performance and energy efficiency — e.g., the access
to a vector execution unit), can be considered a form of
heterogeneity, hardware differentiation can be wider. Despite
that two processors support the same set of instructions (i.e.,
same ISA), their internal organization can be quite different.
For instance, in-order and out-of-order processors can execute
the same code but their performance are totally different,
as well as their power consumption. Reconfigurable devices
introduce a further level of differentiation. In this case a
specific portion of code can be replaced by a dedicated logic
circuits that performs better than its CPU-like counterpart.
From this perspective, there are several possible combinations
of brawny processors, wimpy processors, and accelerators that
are worthy of investigation in the OPERA project.

We believe that future data centers will embrace hardware
heterogeneity for two reasons. The first reason is that there is
a benefit to using special-purpose hardware to solve a specific
problem. General purpose hardware can be more convenient
for programmers to solve a wide range of problems, but
specific hardware is going to be more efficient at solving
the particular problems that it is designed for. This includes
to a lesser degree general purpose CPUs that were designed
with different criteria, such as minimal power consumption
or heat dissipation. The second reason is that heterogeneity is
extremely difficult to avoid in a data center. As compute nodes
fail and are replaced, the exact same hardware is likely no
longer available as a replacement. The result is that there can
be several versions or generations of compute nodes coexisting



in a single data center. While it seems convenient from an
IT perspective to mask these changes and treat all compute
nodes as identical, this kind of policy can have negative results
on application performance. For example, in parallel jobs,
the running time is determined by the slowest node. If all
nodes get an equal amount of work, the slower nodes will
prolong the running time unnecessarily, while the faster nodes
will wait idly for the slower nodes to complete. We believe
that acknowledging the fact that different compute nodes have
different strengths allows us to plan accordingly and take the
differences into account when scheduling tasks.

Among the various forms of hardware acceleration, FPGAs
have recently gained attention for their unique characteristics
as an alternative to GPGPUs. Unlike conventional processors
(CPUs or GPGPUs) where the software controls the way
fixed hardware structures are activated in time, in a FPGA
the hardware structure can be reorganized over the time
(hardware reconfiguration), leading to the implementation of
customized circuits. This feature can be used to efficiently
execute portions of an application with a dedicated hardware
circuit, and without the need for the software to direct control
the circuit. A critical point of using such devices is the need
of complex toolchains to transform a piece of code written
in a high level language to a correctly working hardware
circuit. However, custom circuits can be made available in
the form of pre-synthesized IP blocks that can be instantiated
also by an automated procedure every time a specific task
needs to be accelerated, thus decoupling their implementation
from their regular usage. Further, exploiting custom circuits
directly translate into a more energy efficient execution of
the application. In this context, the OPERA project is going
to investigate the use of FPGAs for the creation of fast
back-to-back communication between different compute nodes
and for enabling cache coherency between CPUs of different
architectures. Figure 2 shows an instance of this heterogeneous
platform. The racks are equipped with both brawny and wimpy
server boxes, while FPGA boards may be used for offloading
certain calculations to custom circuits in order to achieve a
better power/performance ratio when executing an application.

B. Microservices integration

We envisage the possibility of extensively expressing ap-
plications in the form of interconnected microservices, which
are then automatically scheduled for execution on the most
suitable computing elements.

However, the deployment of a set of interconnected tasks
in a heterogeneous context is critical, since different processor
architectures and accelerators must be used. To take advantage
of the availability of diverse hardware elements, a mechanism
to automatically assign tasks to the most suitable architecture
must be put in place. To cope with this issue, we propose
to adopt the microservices model in the following way: (i)
the application is partitioned into independent tasks; (ii) each
task is characterized in order to ease the mapping with the
features of the available hardware; (iii) each task is wrapped by
a thin module that exports the communication interface (e.g.,
a HTTP-based REST API); (iv) the communication among the
microservices (e.g., the exchange of intermediate results of the
calculation) takes place by means of the exported API. How-
ever, to make this process effective (see figure 3) a mechanism
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Fig. 3. Managing microservices running on a heterogeneous infrastructure: a
workload manager assigns microservices to the most suitable hardware system,
based on the power/energy feedback and hardware capabilities.

to describe the microservices in terms of their relationships
with others and interactions with various layers of the cloud
infrastructure is needed. Furthermore, feedback information
coming from the servers executing the microservices instances
should be collected, so that a correct allocation and scheduling
policy (i.e., decide where a specific microservice should be run
in order to maximize performance and energy efficiency) can
be applied.

The first issue can be solved by describing different mod-
ules composing the microservices through an application de-
scriptor, which allows the abstraction of different components
of cloud applications, as well as describes their relationships
and interconnections. This artifact enables the portability of
cloud applications and services across different platforms.
Among the various standards, OASIS TOSCA [34] is one of
the most complete, and it has recently been extended to support
containers (specifically it allows to describe an application
in terms of interconnections among various modules, energy
consumption and hardware requirements). We think it could
be the most suitable candidate for serving this purpose.

Addressing the second issue requires the ability of schedul-
ing microservices depending their specific requirements (e.g.,
specific hardware, minimum performance requirement, etc.)
and policies for maximizing energy efficiency of the whole
cloud infrastructure. The design and implementation of such a
system, here called workload manager, is part of the research
plan of the OPERA project. This component is in charge
of scheduling and assigning microservices to the different
hardware components, by satisfying the following criteria:

1)  Must be able to monitor energy/power efficiency of
each node;

2) Must be able to quickly react to the changes in
workload demand;

3)  Must be aware of each node’s capabilities and specific
features.

The first criteria can be easily met, since modern hardware
contains embedded sensors to allow monitoring of several
operational parameters (e.g., core temperature, speed of fans,
etc.). Furthermore, several tools are available to monitor the
workload of the nodes. The second criteria can be satisfied
by leveraging the capability of the underlying infrastructure to
scale up and down the allocated resources. Finally, the third



criteria is simply satisfied by adopting a standardized way of
describing application requirements and capabilities of each
nodes.

C. Legacy applications

Despite the clear benefits that microservices can provide,
we must also acknowledge the existence of many applications
that are not written following the microservice principles.
These applications include those that are monolithic but written
for the cloud (e.g., Zimbra), and others that were written before
the cloud paradigm became popular (e.g., DB2). While in the
former case, applications can be ported to our development
model (eventually a more coarse level of splitting the appli-
cation in independent tasks can be used), in the latter case
applications (we call them legacy applications) cannot be easily
and directly adapted and thus they will not be able to take
advantage of modern features like auto-scaling. Since there are
still many of such applications, we should provide a strategy
to manage them. Such a strategy is part of the research plan
of the OPERA project.

VI. CONCLUSION

The appeal of using cloud computing is the ability for an
application to automatically scale according to the changes
of the workload demand. However, this is made possible
at the cost of a large energy inefficiency of the underlying
infrastructure. To overcome this inefficiency, heterogeneous
hardware has started to appear as standard equipment of data
center infrastructures. Limitations in the full exploitation of
such heterogeneity comes from the difficulties of mapping
cloud applications with the different hardware components.
This paper proposes a way to overcome these limitations by
adopting a highly scalable model for developing applications.
Before, describing the model, the characteristics of cloud
workloads along with their opportunity of gaining energy
efficiency are analyzed. The proposed model achieves such
scalability by partitioning the application into independent
tasks which remain isolated each other, and that communicate
through a standard interface. We introduced this model in the
context of the OPERA project, by exposing desired features of
the workload manager. We conclude the paper by highlighting
the need of taking care of legacy applications that are by
nature not portable to the proposed model and cannot take
advantage of running on a heterogeneous environment in terms
of performance, scaling and energy efficiency.
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